Control engineering or control systems engineering is the engineering discipline that applies control theory to design systems with desired behaviors. The practice uses sensors to measure the output performance of the device being controlled (often a vehicle) and those measurements can be used to give feedback to the input actuators that can make corrections toward desired performance. When a device is designed to perform without the need of human inputs for correction it is called automatic control (such as cruise control for regulating a car's speed). Multi-disciplinary in nature, control systems engineering activities focus on implementation of control systems mainly derived by mathematical modeling of systems of a diverse range.
Control theory
There are two major divisions in control theory, namely, classical and modern, which have direct implications over the control engineering applications. The scope of classical control theory is limited to single-input and single-output (SISO) system design, except when analyzing for disturbance rejection using a second input. The system analysis is carried out in time domain using differential equations, in complex-s domain with Laplace transform or in frequency domain by transforming from the complex-s domain. Most systems may be assumed to have a second order and single variable system response in the time domain ignoring multi-variable. A controller designed using classical theory often requires on-site tuning due to incorrect design approximations. Yet, due to easier physical implementation of classical controller designs as compared to systems designed using modern control theory, these controllers are preferred in most industrial applications. The most common controllers designed using classical control theory are PID controllers. A less common implementation may include either a Lead or Lag filter, and at times both. The ultimate end is meeting a requirements set typically provided in the time-domain called the Step response, or at times in the frequency domain called the Open-Loop response. The Step response characteristics applied in a specification are typically, percent overshoot, settling time, etc. The Open-Loop response characteristics applied in a specification are typically Gain and Phase margin and bandwidth. These characteristics may be evaluated through simulation including a dynamic model of the system under control coupled with the compensation model.
In contrast, modern control theory is carried out in the state space, and can deal with multi-input and multi-output (MIMO) systems. This overcomes the limitations of classical control theory in more sophisticated design problems, such as fighter aircraft control, with the limitation that no frequency domain analysis is possible. In modern design, a system is represented to the greatest advantage as a set of decoupled first order differential equations defined using state variables. Nonlinear, multivariable, adaptive and robust controltheories come under this division. Matrix methods are significantly limited for MIMO systems where linear independence cannot be assured in the relationship between inputs and outputs. Being fairly new, modern control theory has many areas yet to be explored. Scholars like Rudolf E. Kalman and Aleksandr Lyapunov are well-known among the people who have shaped modern control theory
Control engineering education
At many universities, control engineering courses are taught in Electrical and Electronic Engineering, Mechatronics Engineering,Mechanical engineering, and Aerospace engineering; in others it is connected to computer science, as most control techniques today are implemented through computers, often as embedded systems (as in the automotive field). The field of control within chemical engineering is often known as process control. It deals primarily with the control of variables in a chemical process in a plant. It is taught as part of the undergraduate curriculum of any chemical engineering program, and employs many of the same principles in control engineering. Other engineering disciplines also overlap with control engineering, as it can be applied to any system for which a suitable model can be derived.
Control engineering has diversified applications that include science, finance management, and even human behavior. Students of control engineering may start with a linear control system course dealing with the time and complex-s domain, which requires a thorough background in elementary mathematics and Laplace transform (called classical control theory). In linear control, the student does frequency and time domain analysis. Digital control and nonlinear control courses require z transformation and algebra respectively, and could be said to complete a basic control education. From here onwards there are several sub branches.
There are two major divisions in control theory, namely, classical and modern, which have direct implications over the control engineering applications. The scope of classical control theory is limited to single-input and single-output (SISO) system design, except when analyzing for disturbance rejection using a second input. The system analysis is carried out in time domain using differential equations, in complex-s domain with Laplace transform or in frequency domain by transforming from the complex-s domain. Most systems may be assumed to have a second order and single variable system response in the time domain ignoring multi-variable. A controller designed using classical theory often requires on-site tuning due to incorrect design approximations. Yet, due to easier physical implementation of classical controller designs as compared to systems designed using modern control theory, these controllers are preferred in most industrial applications. The most common controllers designed using classical control theory are PID controllers. A less common implementation may include either a Lead or Lag filter, and at times both. The ultimate end is meeting a requirements set typically provided in the time-domain called the Step response, or at times in the frequency domain called the Open-Loop response. The Step response characteristics applied in a specification are typically, percent overshoot, settling time, etc. The Open-Loop response characteristics applied in a specification are typically Gain and Phase margin and bandwidth. These characteristics may be evaluated through simulation including a dynamic model of the system under control coupled with the compensation model.
No comments:
Post a Comment